
PROCEDURAL MACRO IN THE LINUX
KERNEL 🦀

Spain 17-09-2023

vincenzopalazzo

vincenzopalazzo@member.fsf.org

https://github.com/vincenzopalazzo
mailito:vincenzopalazzo@member.fsf.org

➜ ~ whoami

“Random Person with Ramdom Side Project!”

SOME OF MY CURRENT INTEREST

SOME OF MY CURRENT INTEREST
Working on the Rust compiler

Project Leader of
Project Member of

Macros Working Group
Async Working Group

SOME OF MY CURRENT INTEREST
Working on the Rust compiler

Project Leader of
Project Member of

Macros Working Group
Async Working Group

Working in the linux kernel through the
Initiative;

Rust for Linux

https://github.com/Rust-for-Linux

“C macros are di�cult to read”

while let Some(token) = body_it.next() {
 match token {
 TokenTree��Ident(ident) if ident.to_string() �� "fn" �� {
 let fn_name = match body_it.next() {
 Some(TokenTree��Ident(ident)) ��
 ident.to_string(),
 _ �� continue,
 };
 functions.insert(fn_name);
 }
 �� ���
 _ �� (),
 }
 }

macro_rules! quote_spanned {
 ($span:expr �� $($tt:tt)*) �� ��
 let mut tokens;
 ��allow(clippy��vec_init_then_push)]
 {
 tokens = ��std��vec��Vec��new();
 let span = $span;
 quote_spanned!(@proc tokens span $($tt)*);
 }
 ��proc_macro��TokenStream��from_iter(tokens)
 ��;
 (@proc $v:ident $span:ident) �� {};

}

➜ ~ ls -la linux/rust/macros

INTO THE KERNEL RIGHT NOW

All the macros are de�ned in the same directory;
(good for now)

All the macros are de�ned in the same directory;
(good for now)
All the macros are parsing almost the same syntax;
(impl/struct)

All the macros are de�ned in the same directory;
(good for now)
All the macros are parsing almost the same syntax;
(impl/struct)

��proc_macro]
pub fn foo(body: TokenStream) �� TokenStream {
 for tt in body.into_iter() {
 match tt {
 TokenTree��Ident(_) �� eprintln!("Ident"),
 TokenTree��Punct(_) �� eprintln!("Punct"),
 TokenTree��Literal(_) �� eprintln!("Literal"),
 _ �� {}
 }
 }
 return TokenStream��new();
}

Drawbacks

Code duplication

Drawbacks

Code duplication
Bigger patch when there is a new syntax to support.
(Good for seek jobs)

Drawbacks

Code duplication
Bigger patch when there is a new syntax to support.
(Good for seek jobs)
There is no common pattern, so everyone use their
own mental pattern for parsing

Drawbacks

Code duplication
Bigger patch when there is a new syntax to support.
(Good for seek jobs)
There is no common pattern, so everyone use their
own mental pattern for parsing
Copy and Paste do not work without eprintln

➜ ~ emacs -nw kernel/kproc_macros/README.md

SO, WE ARE FUCK UP?
“Luckily no (maybe)”

The Rust ecosystem has a well known libraries

The Rust ecosystem has a well known libraries

Parsing the stream of tokens syn

https://github.com/dtolnay/syn

The Rust ecosystem has a well known libraries

Parsing the stream of tokens syn
Formatting the result of the proc macro quote

https://github.com/dtolnay/syn
https://docs.rs/quote/latest/quote/

The Rust ecosystem has a well known libraries

Parsing the stream of tokens syn
Formatting the result of the proc macro quote

10 years of rust just 2 library?

https://github.com/dtolnay/syn
https://docs.rs/quote/latest/quote/

SO, IN THE KERNEL WE SHOULD USE
SYN AND QUOTE?

SO, IN THE KERNEL WE SHOULD USE
SYN AND QUOTE?

“Eventually yes, but why we do not take the time
experiment with a new lib?”

SO, IN THE KERNEL WE SHOULD USE
SYN AND QUOTE?

“Eventually yes, but why we do not take the time
experiment with a new lib?”
“No, we can just use quote”

There is a PR in the kernel +78,232 −25#1007

https://github.com/Rust-for-Linux/linux/pull/1007

There is a PR in the kernel +78,232 −25#1007

That import also a wrapper of the rust API proc_macro2
(for no reason for the kernel)

https://github.com/Rust-for-Linux/linux/pull/1007

➜ ~ git commit -S -s -m 'rust: use kproc-macros every..'"

RFC: INTRODUCE AN NEW DEVELOPED
LIBRARY

“Following the pattern of the kernel we call it
kproc_macros”

3th iteration later ..

Goals

Goals

Do not replace syn;

Goals

Do not replace syn;
Do not make an solution similar to syn;

Goals

Do not replace syn;
Do not make an solution similar to syn;
Made experimentation on how improve the proc
macro in general.

Goals

Do not replace syn;
Do not make an solution similar to syn;
Made experimentation on how improve the proc
macro in general.

Goals

Goals

Be able to trace the macro parsing (debugging,
understanding);

Goals

Be able to trace the macro parsing (debugging,
understanding);
Import from the parser what we need, (useless now,
but with different subsystem may be helpful);

Goals

Be able to trace the macro parsing (debugging,
understanding);
Import from the parser what we need, (useless now,
but with different subsystem may be helpful);
Be able to build quote in the language (already in
nightly), or

Goals

Be able to trace the macro parsing (debugging,
understanding);
Import from the parser what we need, (useless now,
but with different subsystem may be helpful);
Be able to build quote in the language (already in
nightly), or
Be able to have a version of quote build with kproc-
macro itself (needs reseach)

Goals

Be able to trace the macro parsing (debugging,
understanding);
Import from the parser what we need, (useless now,
but with different subsystem may be helpful);
Be able to build quote in the language (already in
nightly), or
Be able to have a version of quote build with kproc-
macro itself (needs reseach)
Be able to remove proc_macro2 only in tests, and use
rust proc-macro API

Goals

Be able to trace the macro parsing (debugging,
understanding);
Import from the parser what we need, (useless now,
but with different subsystem may be helpful);
Be able to build quote in the language (already in
nightly), or
Be able to have a version of quote build with kproc-
macro itself (needs reseach)
Be able to remove proc_macro2 only in tests, and use
rust proc-macro API
Be able to cache proc macro metadata around proc-
macro. See 44034

How the user code looks like
��derive(RustBuilder)]
pub struct BooLifetimeDyn<'a> {
 ��allow(dead_code)]
 attr: String,
 ��allow(dead_code)]
 self_ref: u32,
 ��allow(dead_code)]
 gen: Vec<&'a dyn GenTrait>,
}

How the proc macro looks like
struct Tracer;
impl KParserTracer for Tracer {
 fn log(&self, msg: &str) {
 eprintln!("\x1b[93mkproc-tracing\x1b[1;97m {msg}");
 }
}

��proc_macro_derive(RustBuilder, attributes(build))]
pub fn derive_rust(input: TokenStream) �� TokenStream {
 let tracer = DummyTracer {};
 let parser = RustParser��with_tracer(&tracer);
 let ast = parser.parse_struct(&input);
 let toks = generate_impl(&ast);
 trace!(tracer, "{}", toks);
 toks
}

Open Problems

How the generate_impl looks like? (Into a string or
with quote like solution)

Open Problems

How the generate_impl looks like? (Into a string or
with quote like solution)
How I can print errors while parsing? or while
generating the code?

➜ ~ cat kproc_macros/exaperiments/README.md

DOGFOOTING

let plugin = plugin! {
 state: State��new(),
 dynamic: true,
 notification: [],
 methods: [],
 hooks: [],
};
plugin.start();

��rpc_method(
 rpc_name = "foo_macro",
 description = "This is a simple and short description"
)]
pub fn foo_rpc(plugin: &mut Plugin<State>, request: Value) �� Result<Va
 let response = json!({"is_dynamic": plugin.dynamic, "rpc_request":
 Ok(response)
}

User library: lexopt-derive

pub fn generate_impl(struct_tok: &StructToken) �� TokenStream {
 let gen = if let Some(str_gen) = &struct_tok.generics {
 format!("{}", str_gen)
 } else {
 "".to_owned()
 };
 let name_attr = &struct_tok.fields[0].identifier;
 let ty = struct_tok.fields[0].ty.to_string();
 let code = format!(
 "impl{} {}{} �� \
 fn get_{name_attr}(&self) �� {ty} �� \
 return self.{name_attr}.clone()\
 �� \
 \
 fn set_{name_attr}(&self, inner: {ty}) �� ��
 ��",

gen struct tok name gen

editor!{
 @foreach ${attributes} {
 println!("{}", ${ir});
 }
}

editor!{
 @foreach ${attributes} {
 println!("{}", ${ir});
 }
}

Or just �nish to implement in the stdquote

Please complain at https://github.com/rsmicro/kproc-
macros

THANKS!

