PROCEDURAL MACRO IN THE LINUX
KERNEL

e

1 ¢

vincenzopalazzo

vincenzopalazzo@member.fsf.org

Spain 17-09-2023

https://github.com/vincenzopalazzo
mailito:vincenzopalazzo@member.fsf.org

~ whoami

“Random Person with Ramdom Side Project!”

SOME OF MY CURRENT INTEREST

SOME OF MY CURRENT INTEREST

e Working on the Rust compiler
= Project Leader of Macros Working Group
= Project Member of Async Working Group

SOME OF MY CURRENT INTEREST

e Working on the Rust compiler
= Project Leader of Macros Working Group
= Project Member of Async Working Group
e Working in the linux kernel through the Rust for Linux
Initiative;

https://github.com/Rust-for-Linux

A macro is a name
given to a block of C
statements as a pre-
processor directive.

Some(token) = body_it.next() {

token {
TokenTree:: Ident(ident) ident.to_string() = "fn" = {
fn_name = body_it.next() {

Some(TokenTree::Ident(ident)) =
ident.to_string(),
_ = continue,

Fi

functions.insert(fn_name);

macro_rules! quote_spanned {
($span:expr = $($tt:tt)x) = {{
mut tokens;
#Hallow(clippy::vec_init_then_push)]

{
tokens = ::std::vec::Vec::new();
let span = $span;
quote_spanned! (@ tokens span $()*);
}
::proc_macro:: TokenStream:: from_iter()

3
(Gproc $v:ident $span:ident) = {};

~ |s -la linux/rust/macros

INTO THE KERNEL RIGHT NOW

e All the macros are defined in the same directory;
(good for now)

o All the macros are defined in the same directory;
(good for now)

o All the macros are parsing almost the same syntax;
(impl/struct)

e All the macros are defined in the same directory;
(good for now)
o All the macros are parsing almost the same syntax;

(impl/struct)

#Hproc_macro]
pub fn foo(body: TokenStream) — TokenStream {
for tt in body.into_iter() {
match tt {
TokenTree::Ident(_) = eprintln!("Ident"),
TokenTree::Punct(_) = eprintln!("Punct"),
TokenTree::Literal(_) = eprintln!("Literal"),
_ =1
}

}.

return TokenStream::new();

Drawbacks

e Code duplication

Drawbacks

e Code duplication
e Bigger patch when there is a new syntax to support.
(Good for seek jobs)

Drawbacks

e Code duplication

e Bigger patch when there is a new syntax to support.
(Good for seek jobs)

e There is no common pattern, so everyone use their
own mental pattern for parsing

Drawbacks

e Code duplication

e Bigger patch when there is a new syntax to support.
(Good for seek jobs)

e There is no common pattern, so everyone use their
own mental pattern for parsing

o Copy and Paste do not work without eprintin

~ emacs -nw kernel/kproc_macros/README.md

SO0, WE ARE FUCK UP?
“Luckily no (maybe)”

The Rust ecosystem has a well known libraries

The Rust ecosystem has a well known libraries

e Parsing the stream of tokens syn

https://github.com/dtolnay/syn

The Rust ecosystem has a well known libraries

e Parsing the stream of tokens syn
e Formatting the result of the proc macro quote

https://github.com/dtolnay/syn
https://docs.rs/quote/latest/quote/

The Rust ecosystem has a well known libraries

e Parsing the stream of tokens syn
e Formatting the result of the proc macro quote

10 years of rust just 2 library?

https://github.com/dtolnay/syn
https://docs.rs/quote/latest/quote/

- If your code works fine don't touch it
+ my code:

b -]

crazyjoker?s OP - & mo. ago

well to make the question strict and concise, I was looking for a way to write a macro_rule that
parses the rust syntax and returns the TokenStream

let toks = editor! {
impl Foo { }
}

I was not asking for fixing my error, but in chatting about tricks on how to do it. I'm able to fix
the error alone

Also, you spelled crate wrong. A crate is a box (often made of wood) used to transport
goods.

S0, the Al is not so good to catch errors and with my disability, I can do better than that!

f 1 {5 D Reply Share MATip ***

? Aloso - & Mo, ago

Ok, so why aren't you just using quote? What's the use case? I think building an arbitrary
token stream with only macro_rules! would be a lot of work. Also, recursive macro_rules
tend to be rather inefficient and may run into the recursion limit for larger inputs.

tﬁ- 1 -{} C] Reply Share A& Tip

o

crazyjoker®e OF - 6 mo. ago

[know but using quote is not an answer here, sorry!

f & G L_,—] Reply Share ATip -

SO0, IN THE KERNEL WE SHOULD USE
SYN AND QUOTE?

SO0, IN THE KERNEL WE SHOULD USE
SYN AND QUOTE?

“Eventually yes, but why we do not take the time
experiment with a new [lib?”

SO0, IN THE KERNEL WE SHOULD USE
SYN AND QUOTE?

“Eventually yes, but why we do not take the time
experiment with a new [lib?”

There is a PR in the kernel #1007

https://github.com/Rust-for-Linux/linux/pull/1007

There is a PR in the kernel #1007 75232 -25

That import also a wrapper of the rust API proc_macro2
(for no reason for the kernel)

https://github.com/Rust-for-Linux/linux/pull/1007

~ git commit -S -s -m 'rust: use kproc-macros every.."

RFC: INTRODUCE AN NEW DEVELOPED
LIBRARY

“Following the pattern of the kernel we call it
kproc_macros”

3th iteration later ..

Goals

e Do not replace syn;

Goals

e Do not replace syn;
e Do not make an solution similar to syn;

Goals

e Do not replace syn;

e Do not make an solution similar to syn;

o Made experimentation on how improve the proc
macro in general.

Goals

e Be able to trace the macro parsing (debugging,
understanding);

Goals

e Be able to trace the macro parsing (debugging,
understanding);

e Import from the parser what we need, (useless now,
but with different subsystem may be helpful);

Goals

e Be able to trace the macro parsing (debugging,
understanding);

e Import from the parser what we need, (useless now,
but with different subsystem may be helpful);

e Be able to build quote in the language (already in
nightly), or

Goals

Be able to trace the macro parsing (debugging,
understanding);

Import from the parser what we need, (useless now,
but with different subsystem may be helpful);

Be able to build quote in the language (already in
nightly), or

Be able to have a version of quote build with kproc-
macro itself (needs reseach)

Goals

Be able to trace the macro parsing (debugging,
understanding);

Import from the parser what we need, (useless now,
but with different subsystem may be helpful);

Be able to build quote in the language (already in
nightly), or

Be able to have a version of quote build with kproc-
macro itself (needs reseach)

Be able to remove proc_macro2 only in tests, and use
rust proc-macro API

Goals

e Be able to trace the macro parsing (debugging,
understanding);

e Import from the parser what we need, (useless now,
but with different subsystem may be helpful);

« Be able to build quote in the language (already in
nightly), or

e Be able to have a version of quote build with kproc-
macro itself (needs reseach)

e Be able to remove proc_macro2 only in tests, and use
rust proc-macro API

e Be able to cache proc macro metadata around proc-
macro. See 44034

How the user code looks like

#H derive(RustBuilder)]

pub struct BoolLifetimeDyn<'a> {
#Hallow(dead_code)]
attr: String,
#Hallow(dead_code)]
self_ref: u32,
t#Hallow(dead_code)]
gen: Vec<&'a dyn GenTrait>,

How the proc macro looks like

struct Tracer;
impl KParserTracer for Tracer {
fn log(&self, msg: &str) {
eprintln! ("\x1b[93mkproc-tracing\x1b[1;97m {msg}");
}

}.

#H proc_macro_derive(RustBuilder, attributes(build))]
pub fn derive_rust(input: TokenStream) — TokenStream {

let tracer = DummyTracer {};

let parser = RustParser::with_tracer(&tracer);

let ast = parser.parse_struct(&input);

let toks = generate_impl(&ast);

trace! (tracer, "{}", toks);

toks

Open Problems

« How the generate_impl looks like? (Into a string or
with quote like solution)

Open Problems

« How the generate_impl looks like? (Into a string or
with quote like solution)

e How | can print errors while parsing? or while
generating the code?

~ cat kproc_macros/exaperiments/README.md

DOGFOOTING

let plugin = plugin! {
state: State::new(),
dynamic: true,
notification: [],
methods: [],
hooks: [],

b
plugin.start();

#H rpc_method(
rpc_name = "foo_macro",
description = "This is a simple and short description"

)]
pub fn foo_rpc(plugin: &mut Plugin<State>, request: Value) — Result<V:

let response = json!({"is_dynamic": plugin.dynamic, "rpc_request":
Ok(response)

User library: lexopt-derive

pub fn generate_impl(struct_tok: &StructToken) — TokenStream {
let gen = if let Some(str_gen) = &struct_tok.generics {
format! ("{}", str_gen)
} else {
""" to_owned()
i

let name_attr = &struct_tok.fields[0].identifier;
let ty = struct_tok.fields[0].ty.to_string();
let code = format!(
“impl{F {H} 41\
get_{name_attr}(&) = {ty}r {{ \
return self.{name_attr}.clone()\
B\
\
fn set_{name_attr}(&self, inner: {ty}) {{ }r
)

nan ctniirnt +nlr Nnamao nan

<
@foreach ${attributes} {
printin! ("{}", ${ir});
}.
}.

editor!{
@foreach ${attributes} {
println! ("{}", ${ir});
}.
}.

Or just finish to implement quote in the std

Please complain at https://github.com/rsmicro/kproc-
macros

THANKS'!

