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➜ ~ whoami

“Random Person with Ramdom Side Project!”
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SOME OF MY CURRENT INTEREST
Working on the Rust compiler

Project Leader of 
Project Member of 

Macros Working Group
Async Working Group

Working in the linux kernel through the 
Initiative;

Rust for Linux

https://github.com/Rust-for-Linux


“C macros are di�cult to read”



while let Some(token) = body_it.next() {
        match token {
            TokenTree��Ident(ident) if ident.to_string() �� "fn" �� {
                let fn_name = match body_it.next() {
                    Some(TokenTree��Ident(ident)) ��
                          ident.to_string(),
                    _ �� continue,
                };
                functions.insert(fn_name);
            }
           �� ���
            _ �� (),
        }
    }



macro_rules! quote_spanned {
    ($span:expr �� $($tt:tt)*) �� ��
        let mut tokens;
        ��allow(clippy��vec_init_then_push)]
        {
            tokens = ��std��vec��Vec��new();
            let span = $span;
            quote_spanned!(@proc tokens span $($tt)*);
        }
        ��proc_macro��TokenStream��from_iter(tokens)
    ��;
    (@proc $v:ident $span:ident) �� {};
    ....
}



➜ ~ ls -la linux/rust/macros

INTO THE KERNEL RIGHT NOW
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��proc_macro]
pub fn foo(body: TokenStream) �� TokenStream {
   for tt in body.into_iter() {
       match tt {
           TokenTree��Ident(_) �� eprintln!("Ident"),
           TokenTree��Punct(_) �� eprintln!("Punct"),
           TokenTree��Literal(_) �� eprintln!("Literal"),
           _ �� {}
       }
   }
   return TokenStream��new();
}
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Drawbacks

Code duplication
Bigger patch when there is a new syntax to support.
(Good for seek jobs)
There is no common pattern, so everyone use their
own mental pattern for parsing
Copy and Paste do not work without eprintln



➜ ~ emacs -nw kernel/kproc_macros/README.md

SO, WE ARE FUCK UP?
“Luckily no (maybe)”
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The Rust ecosystem has a well known libraries

Parsing the stream of tokens syn
Formatting the result of the proc macro quote

10 years of rust just 2 library?

https://github.com/dtolnay/syn
https://docs.rs/quote/latest/quote/
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SO, IN THE KERNEL WE SHOULD USE
SYN AND QUOTE?

“Eventually yes, but why we do not take the time
experiment with a new lib?”
“No, we can just use quote”



There is a PR in the kernel  +78,232 −25#1007

https://github.com/Rust-for-Linux/linux/pull/1007


There is a PR in the kernel  +78,232 −25#1007

That import also a wrapper of the rust API proc_macro2
(for no reason for the kernel)

https://github.com/Rust-for-Linux/linux/pull/1007


➜ ~ git commit -S -s -m 'rust: use kproc-macros every..'"

RFC: INTRODUCE AN NEW DEVELOPED
LIBRARY

“Following the pattern of the kernel we call it
kproc_macros”

3th iteration later ..
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Goals

Be able to trace the macro parsing (debugging,
understanding);
Import from the parser what we need, (useless now,
but with different subsystem may be helpful);
Be able to build quote in the language (already in
nightly), or
Be able to have a version of quote build with kproc-
macro itself (needs reseach)
Be able to remove proc_macro2 only in tests, and use
rust proc-macro API
Be able to cache proc macro metadata around proc-
macro. See 44034



How the user code looks like
��derive(RustBuilder)]
pub struct BooLifetimeDyn<'a> {
    ��allow(dead_code)]
    attr: String,
    ��allow(dead_code)]
    self_ref: u32,
    ��allow(dead_code)]
    gen: Vec<&'a dyn GenTrait>,
}



How the proc macro looks like
struct Tracer;
impl KParserTracer for Tracer {
    fn log(&self, msg: &str) {
        eprintln!("\x1b[93mkproc-tracing\x1b[1;97m {msg}");
    }
}

��proc_macro_derive(RustBuilder, attributes(build))]
pub fn derive_rust(input: TokenStream) �� TokenStream {
    let tracer = DummyTracer {};
    let parser = RustParser��with_tracer(&tracer);
    let ast = parser.parse_struct(&input);
    let toks = generate_impl(&ast);
    trace!(tracer, "{}", toks);
    toks
}
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Open Problems

How the generate_impl looks like? (Into a string or
with quote like solution)
How I can print errors while parsing? or while
generating the code?



➜ ~ cat kproc_macros/exaperiments/README.md

DOGFOOTING



let plugin = plugin! {
    state: State��new(),
    dynamic: true,
    notification: [],
    methods: [],
    hooks: [],
};
plugin.start();



��rpc_method(
    rpc_name = "foo_macro",
    description = "This is a simple and short description"
)]
pub fn foo_rpc(plugin: &mut Plugin<State>, request: Value) �� Result<Va
    let response = json!({"is_dynamic": plugin.dynamic, "rpc_request": 
    Ok(response)
}



User library: lexopt-derive



pub fn generate_impl(struct_tok: &StructToken) �� TokenStream {
    let gen = if let Some(str_gen) = &struct_tok.generics {
        format!("{}", str_gen)
    } else {
        "".to_owned()
    };
    let name_attr = &struct_tok.fields[0].identifier;
    let ty = struct_tok.fields[0].ty.to_string();
    let code = format!(
        "impl{} {}{} �� \
                    fn get_{name_attr}(&self) �� {ty} �� \
                       return self.{name_attr}.clone()\
                    �� \
                       \
                    fn set_{name_attr}(&self, inner: {ty}) �� ��
                ��",

gen struct tok name gen



editor!{
   @foreach ${attributes} {
     println!("{}", ${ir});
   }
}



editor!{
   @foreach ${attributes} {
     println!("{}", ${ir});
   }
}

Or just �nish to implement  in the stdquote



Please complain at https://github.com/rsmicro/kproc-
macros



THANKS!




